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A B S T R A C T

Successful execution of goal-directed behaviors often requires the deployment of cognitive control, which is
thought to require cognitive effort. Recent theories have proposed that anterior cingulate cortex (ACC) regulates
control levels by weighing the reward-related benefits of control against its effort-related costs. However, given
that the sensations of cognitive effort and reward valuation are available only to introspection, this hypothesis is
difficult to investigate empirically. We have proposed that two electrophysiological indices of ACC function,
frontal midline theta and the reward positivity (RewP), provide objective measures of these functions. To explore
this issue, we recorded the electroencephalogram (EEG) from participants engaged in an extended, cognitively-
demanding task. Participants performed a time estimation task for 2 h in which they received reward and error
feedback according to their task performance. We observed that the amplitude of the RewP, a feedback-locked
component of the event related brain potential associated with reward processing, decreased with time-on-task.
Conversely, frontal midline theta power, which consists of 4–8 Hz EEG oscillations associated with cognitive
effort, increased with time-on-task. We also explored how these phenomena changed over time by conducting
within-participant multi-level modeling analyses. Our results suggest that extended execution of a cognitively-
demanding task is characterized by an early phase in which high control levels foster rapid improvements in task
performance, and a later phase in which high control levels were necessary to maintain stable task performance,
perhaps counteracting waning reward valuation.

1. Introduction

Goal-directed behavior often requires cognitive control in order to
facilitate the execution of non-automatic behaviors (Norman and
Shallice, 1986). It is believed that the application of control feels ef-
fortful (e.g., Botvinick and Braver, 2015; Shenhav et al., 2017) and that
cognitive effort is inherently aversive, such that people tend to avoid
cognitively demanding tasks (Kool et al., 2010; Inzlicht et al., 2015;
McGuire and Botvinick, 2010; Westbrook and Braver, 2015). This
process is thought to recruit a mechanism that weighs the benefits of
applying control against the effort-related costs in doing so (Botvinick
and Braver, 2015; Shenhav et al., 2017; Westbrook and Braver, 2015).
For example, although prolonged cognitive effort normally results in
mental fatigue, which disrupts task performance, these performance
decrements can be counteracted if subjects are offered motivational

incentives (Boksem et al., 2006; Hockey, 2011; Hopstaken et al., 2015;
Lorist et al., 2005; Boksem and Tops, 2008, for review). Yet despite an
upsurge of interest in this topic in recent years, the neurocognitive
mechanisms that sustain cognitive effort are not well-understood.

2. Anterior cingulate cortex function in reward processing and
effortful control

Recently, several theories and computational models have proposed
that anterior cingulate cortex (ACC) may provide such a mechanism
(e.g., Botvinick and Braver, 2015; Holroyd and McClure, 2015; Holroyd
and Umemoto, 2016; Holroyd and Yeung, 2012; Shenhav et al., 2013,
2017; Vassena et al., 2017; Verguts et al., 2015). The function of ACC is
famously controversial (Ebitz and Hayden, 2016). Nevertheless, accu-
mulating evidence suggests that the caudal subdivision of ACC, which is
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formally known as “anterior midcingulate cortex” (Vogt, 2009; see also
Shackman et al., 2011), may serve as a computational hub that in-
tegrates cognitive processes related to motivation and control. For ex-
ample, Holroyd and Yeung (2012) proposed that ACC is responsible for
motivating and selecting extended action sequences based on learned
task values. According to this view, instead of concerning itself with the
minutia of moment-to-moment behaviors (such as typing each letter in
a manuscript), ACC regulates behavior at a higher level of abstraction
(such as whether or not to write the manuscript at all), and determines
how well the task should be performed at a global level (cf. Botvinick
et al., 2009; Botvinick, 2012). Holroyd and McClure (2015) later im-
plemented these ideas in a computational model of rodent behavior.
Although these theories differ in their specifics, they hold in common
the idea that ACC regulates the control levels it invests in a task ac-
cording to the rewards received for doing so.

A challenge in studying these neurocognitive processes, however, is
that the sensations of reward valuation and effort expenditure are
available only to introspection, rendering them difficult to assess em-
pirically. Task performance is an imperfect proxy for these processes
because participants can perform a task well either because it is easy or
because they apply enough effort to make it appear to be easy.
Therefore, objective measures of reward valuation and cognitive effort,
were they available, would provide insight into how the control system
self-regulates (Botvinick and Braver, 2015). Here we propose that
electrophysiological correlates of cognitive effort and of reward va-
luation can fulfill this purpose, which we explore by recording the
electroencephalogram (EEG) from subjects as they perform an ex-
tended, mentally-fatiguing task.

3. Electrophysiological correlates of reward valuation and
cognitive effort

We explored this question by utilizing two electrophysiological
correlates of ACC activity: the reward positivity (RewP) and frontal
midline theta (FMT) oscillations (Holroyd and Umemoto, 2016). More
commonly known as the feedback error-related negativity, the RewP is
an event-related potential (ERP) component that is differentially
modulated by feedback stimuli with negative vs. positive valence
(Miltner et al., 1997); the component has recently been renamed the
RewP because it appears to be relatively more sensitive to reward
outcomes than to error outcomes (Holroyd and Umemoto, 2016).
Holroyd and Coles (2002) proposed that the RewP is produced by fast,
phasic midbrain dopamine reward prediction error signals modulating
ACC activity. Consistent with the theory, numerous studies have con-
firmed that the RewP indexes a reward prediction error signal
(Sambrook and Goslin, 2015; Walsh and Anderson, 2012; but see
Janssen et al., 2016). Given the inverse problem, the neural source of
the RewP is less clear, but the balance of evidence suggests that it is
produced in anterior midcingulate cortex (e.g., Miltner et al., 1997;
Becker et al., 2014; but see Proudfit, 2015). Of particular relevance to
this study, RewP amplitude correlates positively with individual dif-
ferences in reward sensitivity (Bress and Hajcak, 2013; Umemoto and
Holroyd, 2017; see also Cooper et al., 2014; Liu et al., 2014; Parvaz
et al., 2016), and negatively with individual differences in depression
levels (e.g., Umemoto and Holroyd, 2017; Proudfit, 2015), which sug-
gests that the RewP may index subjective levels of reward valuation
(see Holroyd and Umemoto, 2016 for review).

FMT consists of 4–8 Hz EEG oscillations distributed over frontal-
central regions of the human scalp. Source localization studies of FMT
point to ACC as the neural generator (e.g., Asada et al., 1999; Cavanagh
and Frank, 2014; Ishii et al., 1999; Luu and Tucker, 2001), and FMT
power appears to reflect an effortful control process (e.g., Cavanagh and
Frank, 2014; Holroyd and Umemoto, 2016). Notably, cognitive tasks
elicit two kinds of related FMT signals: phasic and ongoing. Brief,
phasic changes in FMT power are observed following receipt of nega-
tive feedback stimuli (indicating, e.g., no-reward or punishment) (e.g.,

Bernat et al., 2015; Foti et al., 2015). A similar burst of FMT power is
also observed immediately following error commission and during
periods of response conflict (e.g., Cavanagh and Frank, 2014; Luu and
Tucker, 2001; see also Lin et al., 2017), which according to one study
decreases with time-on-task (Wascher et al., 2014). By contrast, on-
going FMT power is observed over extended periods of task execution
(e.g., Asada et al., 1999; Ishii et al., 1999), as well as during the off-task,
resting state (Scheeringa et al., 2008). It is associated with sustained
mental effort, as observed, for example, when participants perform
arithmetic calculations (Hsieh and Ranganath, 2014; Mitchell et al.,
2008). Furthermore, FMT power rises with time on task (e.g., Barwick
et al., 2012; Paus et al., 1997; Wascher et al., 2014), suggesting that
ACC contributes to sustaining effortful behavior in the face of growing
mental fatigue.

3.1. Present study

We have previously proposed that FMT reflects the control signal
applied by ACC over task performance, and that RewP amplitude re-
flects the reward signal propagated to the ACC for the purpose of reg-
ulating the control level (Holroyd and Umemoto, 2016). In this way,
ACC is well-positioned to motivate task performance (Holroyd and
McClure, 2015; Holroyd and Yeung, 2012). Although previous studies
have utilized these signals to study reward valuation and cognitive ef-
fort in isolation, to our knowledge none have examined how these
processes are involved in sustaining behavior within the same, mentally
fatiguing task. For this purpose, we recorded the EEG from participants
while they performed a standard time estimation task for 2 h (Miltner
et al., 1997). We predicted that FMT power would increase (Barwick
et al., 2012; Paus et al., 1997; Wascher et al., 2014) and RewP ampli-
tude would decrease with time-on-task due to increasing levels of fa-
tigue. We further predicted that RewP amplitude and FMT power would
interact, reflecting the neural processes that sustain task performance.
However, most current theories of ACC function do not provide detailed
predictions about the specifics of this interaction (e.g., Botvinick and
Braver, 2015, Holroyd and Umemoto, 2016; Holroyd and Yeung, 2012;
Shenhav et al., 2013, 2017; Vassena et al., 2017). That said, one
computational model of rodent ACC suggests a complex process by
which control levels increase in response to a decreasing reward rate (in
order to maintain a high average reward), until the average reward
itself decreases, which results in falling levels of control (because the
elevated control is unlikely to yield more reward; Holroyd and McClure,
2015; see also Verguts et al., 2015). We therefore explored whether the
relationship between FMT power and RewP amplitude would reflect
similar dynamics. However, to foreshadow our results, we failed to find
such a relationship.

Further, because P300 amplitude is believed to reflect attentional
resource allocation and the motivational significance of a task, we also
measured P300 amplitude as an index of task engagement (Murphy
et al., 2011; Polich, 2007). Consistent with past fatigue studies, we
expected P300 amplitude to decrease with time on task (e.g., Hopstaken
et al., 2015, 2016). Lastly, we explored whether ACC function is ex-
pressed as a dimension of personality related to reward sensitivity and
persistence, as we have recently proposed (Holroyd and Umemoto,
2016; see also Umemoto and Holroyd, 2016, 2017). For this purpose,
participants answered several personality questionnaires related to
motivation, reward sensitivity, and levels of depression, which we ex-
plored in relation to their behavior and to these electrophysiological
signatures of ACC function.

4. Materials and methods

4.1. Participants

Sixty five undergraduate students were recruited from the
University of Victoria. The sample size was determined based on past
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studies examining individual differences related to the RewP (e.g., Bress
and Hajcak, 2013; Nelson et al., 2016). A sensitivity analysis using the
G*power software program (Erdfelder et al., 1996) indicated sufficient
statistical power to detect small effects for the main within-subject
analyses.1 Participants were recruited from the Department of Psy-
chology subject pool to fulfill a course requirement or earn bonus
credits. All subjects (16 males, 10 left-handed, age range=17–23 years,
mean age = 19.3+/− 1.5 years) had normal or corrected-to-normal
vision. Each also received a monetary bonus in addition to the credits,
the amount of which depended on their task performance (see below).
All of the subjects provided informed consent as approved by the local
research ethics committee. The experiment was conducted in ac-
cordance with the ethical standards prescribed in the 1964 Declaration
of Helsinki.

4.2. Task design

We conducted a time estimation task that required participants to
estimate 1 s on every trial (Miltner et al., 1997). Each trial started with
a presentation of a visual cue in the form of a white central cross (1° by
1° square visual angle) on the computer screen. Participants were in-
structed to press a left button on a computer mouse using their right
hand when they believed that 1 s had elapsed following the cue onset.
After 600ms following the response, they were presented with a feed-
back stimulus indicating whether their response was on-time or not on-
time. The response was considered on-time if it occurred within a
narrow window of time centered around 1 s, the size of which was
adjusted from trial to trial according to a staircase procedure, as fol-
lows. At the start of the experiment the size of the window was in-
itialized at 200ms, such that responses occurring between 900 and
1100ms were considered correct. The size of the time window (i.e.,
time-window size) was then adjusted depending on the participant's
performance: error responses caused the time window to increase by
10ms (making the task easier), and correct responses caused the time-
window to decrease by 10ms (making the task harder). This manip-
ulation ensured that participants received reward feedback on ap-
proximately 50% of the trials (Miltner et al., 1997). The feedback sti-
muli were represented by abstract symbols presented at fixation (3.3°
by 3.3° square visual angle). For half of the participants, a white circle
indicated that they earned 1 cent for that trial, and a white diamond
indicated that they did not earn any reward for that trial. This mapping
was reversed for the other half of the participants. After a variable inter-
trial interval of 1400ms, 1500ms, or 1600ms, determined at random,
the next trial began with a presentation of the visual cue.

Further, we offered an additional motivational incentive to enhance
individual differences in task performance by providing all of the par-
ticipants an opportunity to participate in a lottery to win a CAN $100
Amazon.com gift card. Every participant earned at least 1 “ticket” re-
gardless of their performance, which ensured that all subjects had at
least a small chance of receiving the prize. In addition, the participants
were told (truthfully) that the better performers would earn extra
tickets. For this, when all of the participants’ data were collected, we
calculated each participant's mean time-window size across all trials
and compared them against the grand mean time-window size averaged
across all participants. Participants received an extra ticket for every
5ms decrement with respect to the grand mean time-window size. For
example, an individual average time-window size that was 15ms less
than the grand mean time-window size would earn that participant 4
tickets total (3 additional tickets plus the baseline 1 ticket). Upon
completing the experiment, all of the tickets were entered into a me-
taphorical lottery box, from which we randomly selected 2 winning

participants. The two winners were then contacted and received the
award via email afterword.

4.3. Task procedure

Participants were seated comfortably in front of a computer monitor
(1024 by 1280 pixels) at a distance of about 60 cm in a dimly lit room.
The task was programmed in Matlab (MathWorks, Natick, MA, USA)
using the Psychophysics Toolbox extension (Brainard, 1997; Pelli,
1997). Before the experiment was described to them, all of the parti-
cipants read a form that explained the opportunity to win a CAN $100
Amazon gift card. Participants were told that if they decided to consent
to participate in this opportunity, at least one ticket would be entered in
their name into the “lottery”, and that additional tickets would be en-
tered if their overall performance was better than the average perfor-
mance across all of the participants. Consent was indicated by partici-
pants providing a contact email address on the form; only two
participants did not provide consent.

Participants were then provided with both written and verbal in-
structions about the time estimation task. They practiced the task for 20
trials before starting the task proper, which consisted of 16 blocks of 95
trials each. Participants were not informed about the exact number of
trials or blocks to complete, but instead were told that they would
perform the task for about 2 h. Self-paced between-block rest periods
were provided, and after about 1 h participants relaxed during a longer
rest period while the experimenter checked the electrode impedances.
Participants were told that the reward they accumulated across trials
would be paid out to them at the end of the experiment, and that they
should estimate 1 s on each trial as accurately as possible in order to
maximize their reward earnings. Participants were informed about their
winnings only at the end of the 2-h experiment (no feedback about their
performance or winnings was provided during the experiment). Upon
completing the experiment they answered several personality ques-
tionnaires (see below). These were followed by a post-experiment
paper-and-pen questionnaire that asked about the participant's overall
experience of the experiment, the strategies they employed (if any), and
their level of task engagement on a scale of 1–5, with 1 indicating not at
all engaged and 5 indicating very engaged.

4.4. Questionnaires

Participants completed a total of six personality questionnaires re-
lated to motivation, reward sensitivity, and depression symptoms, ad-
ministered through LimeSurvey (https://www.limesurvey.org/) on the
same computer where the task was performed. The personality ques-
tionnaires administered included 1) the Persistence Scale (Cloninger
et al., 1993; Gusnard et al., 2003), which assesses the tendency to
overcome daily challenges on a scale of 1 (definitely false) to 5 (defi-
nitely true). 2) The 8-item Reward Responsiveness (RR) Scale (Van den
Berg et al., 2010), which is a self-report measure of reward-related
behavior on a scale of 1 (strong disagreement) to 4 (strong agreement).
(3) The 18-item Temporal Experience of Pleasure Scale (TEPS), which
assesses two trait measures related to hedonic capacity, namely con-
summatory pleasure (TEPS-C: i.e., “liking” or in-the-moment experi-
ence of pleasure) and anticipatory pleasure (TEPS-A: i.e., “wanting”),
on a scale of 1 (“very false for me”) to 6 (“very true for me”) (Gard
et al., 2006). 4) The 18-item Apathy Evaluation Scale (AES; Marin et al.,
1991), which measures lack of motivation regarding the behavioral,
cognitive, and emotional aspects of goal-directed behavior on a scale of
1 (very characteristic) to 4 (not at all characteristic). 5) The 22-item
Ruminative Responses Scale (RRS: Treynor et al., 2003), which mea-
sures the propensity to ruminate in response to depressed mood on a
scale of 1 (almost never) to 4 (almost always). 6) The 21-item short-
form of the Depression Anxiety Stress Scale (DASS-21) (Lovibond and
Lovibond, 1995), which measures severity of depression, anxiety, and
stress on a scale from 0 (“did not apply to me at all”) to 3 (“applied to

1 The results of these analyses are provided in the Supplementary materials. Note that
this sample size only provides adequate power to detect medium-to-large effects related
to individual differences in personality.
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me very much, or most of the time”). However, the rumination scale
and the anxiety and stress subscales of the DASS-21 were not included
in the analyses as they tended to strongly correlate with other variables
(for example, with the depression scores), and because they were not
the primary focus of the study. Summed total scores were used for each
of the questionnaires such that high scores indicated, respectively, high
persistence, high reward responsiveness, high hedonic capacity (or re-
duced anhedonia), high levels of apathy, and high levels of depression.

4.5. EEG data acquisition and pre-processing

The EEG was recorded using a montage of 30 electrode sites in
accordance to the extended international 10–20 system (Jasper, 1958).
Signals were acquired using Ag/AgCl ring electrodes mounted in a
nylon electrode cap with an abrasive, conductive gel (EASYCAP GmbH,
Herrsching-Breitbrunn, Germany). Signals were amplified by low-noise
electrode differential amplifiers with a frequency response high cut-off
at 50 Hz (90 dB–octave roll off) and digitized at a rate of 250 samples
per second. Digitized signals were recorded to disk using Brain Vision
Recorder software (Brain Products GmbH, Munich, Germany). Inter-
electrode impedances were maintained below 20 kΩ. Two electrodes
were also placed on the left and right mastoids. The EEG was recorded
using the average reference. The electroocculogram (EOG) was re-
corded for the purpose of artifact correction; horizontal EOG was re-
corded from the external canthi of both eyes, and vertical EOG was
recorded from the suborbit of the right eye and electrode channel Fp2.

4.6. Data analysis

4.6.1. Behavior
To recap, participants’ estimation of 1 s was considered on-time if it

occurred within a narrow window of time centered around 1 s, the size
of which was initialized at 200ms, such that responses occurring be-
tween 900 and 1100ms were considered correct at the start of the
experiment. The time-window size was adjusted from trial to trial ac-
cording to a staircase procedure that ensured 50% probabilities of re-
ceiving positive and negative feedback (see Task Design). The mean
time-window size averaged across trials for each block was calculated
for each participant. Therefore, smaller and larger average time-
window sizes indicate, respectively, better and worse performance.

4.6.2. Electrophysiology
Post-processing and data visualization were performed using Brain

Vision Analyzer software (Brain Products GmbH). The digitized signals
were filtered using a fourth-order digital Butterworth filter with a
passband of 0.10–30 Hz. The data were segmented for an 800ms epoch
extending from 200ms prior to 600ms following presentation of re-
ward and no-reward feedback. Ocular artifacts were corrected using an
eye movement correction algorithm (Gratton et al., 1983). The EEG
data were re-referenced to averaged mastoids electrodes. Data were
baseline corrected by subtracting from each sample for each channel
the mean voltage associated with that electrode during the 200ms in-
terval preceding feedback onset. Trials with muscular and other arti-
facts were excluded according to a 150 μV Max-Min voltage difference,
a± 150 μV level threshold, a± 35 μV step threshold, and a 0.1 μV
lowest-allowed activity level as rejection criteria. ERPs were then cre-
ated for each electrode and participant by averaging the single-trial
EEG according to the reward and no-reward feedback type.

The RewP was measured at channel FCz, where it reached max-
imum amplitude, utilizing a difference wave approach that isolated the
RewP from overlapping ERP components such as the P300 (Holroyd
and Krigolson, 2007; Sambrook and Goslin, 2015); a difference wave
was created for each participant by subtracting the ERP to no-reward
feedback stimuli from the ERP to reward feedback stimuli. RewP am-
plitude was then determined by averaging the mean amplitude in the
difference wave from 200 to 300ms following feedback onset

(determined based on a visual inspection of the grand-average of the
difference wave across all participants, which ensured that the grand-
average RewP in this time range was characterized by a positive peak
with a frontal-central voltage distribution). P300 amplitude was mea-
sured at channel Pz, where it typically reaches maximum amplitude
across the scalp (Donchin and Coles, 1988). Individual subject ERPs
were averaged across feedback conditions, and P300 amplitude was
defined by finding the maximum positive deflection from 280 to 420ms
following feedback onset (as determined based on a visual inspection of
the grand-average ERP across all trials and all participants).2 In order to
assess FMT power, the continuous EEG data were segmented into
consecutive 4 s epochs with 200ms overlap between segments (starting
from the beginning of the experiment and continuing to the end)
averaged across feedback types.3 Artifact rejection and ocular correc-
tion were conducted on these EEG epochs as for the ERP data, and then
submitted to a power spectral analysis using a Fast Fourier Transform
(FFT) (Hanning Window, 10% length). FMT was assessed for each trial
by averaging power between 4 and 8 Hz at each channel.

We employed a multi-level modeling analysis using the MIXED
function in SPSS (IBM SPSS 24) in order to examine the effect of within-
person changes in electrophysiological measures (i.e., RewP, FMT) on
behavior (i.e., time-window size) across the 16 blocks. To assess how
these measures fluctuated across time, we calculated person-centered
scores for the predictor variables (i.e., RewP, FMT) such that mean
performance averaged across all blocks of trials of a given participant
was subtracted from the mean performance averaged across trials for
each block (e.g., adjusted RewP amplitude for block 1= average RewP
amplitude for block 1 – the average RewP amplitude across all 16
blocks) (e.g., Saunders et al., 2015). By doing this, each participant's
score for a given predictor was calculated relative to their own average
score, with positive and negative values indicating higher and lower
values than average for that participant, respectively. Note that cen-
tering facilitates interpretation of the model's interaction terms (Aiken
and West, 1991), which relate to the mean of each individual subject
(within-subjects) rather than to the mean across subjects. That is, the
interaction effects are interpreted in terms of how much each predictor
variable (e.g., FMT power) is above or below the mean for each parti-
cipant (see below). Our primary analysis of interest investigated how
within-person fluctuations in RewP amplitude and FMT power related
to changes in time-window size with time on task, with the time (block)
variable coded both as a linear slope from 0 to 15 (reflecting the 16
blocks in total) and as a quadratic slope, as calculated as the square of
the linear-time variable (i.e., 02 to 152).4 For completeness, we also
explored how the behavioral and electrophysiological measures related
to each other by separately testing RewP amplitude and FMT power as a
function of the other two variables and both the linear and quadratic
time variables. For example, a model testing the time-course of RewP
amplitude included time-window size, FMT power, linear-time, and
quadratic-time as its predictors. All of the analyses were conducted with
a random intercept for each participant,5 unstructured covariance type,
and maximum likelihood estimation. Both time (block) variables were
treated as random slopes. Effect size, r, is reported for each model

2 Note that the scalp distribution for P300 was not maximal centrally but rather over
lateral scalp areas (e.g., electrodes P3 and P4). However, given that the P300 was not the
focus of our analysis, P300 amplitude was measured at channel Pz in keeping with pre-
vious studies, and because P300 amplitude was maximal there when comparing only the
midline channels.

3 When we segmented the EEG data with a 50% overlap between segments for the
frontal midline theta analyses, there was no significant difference in the overall power
(p=0.415), and all the results remained the same.

4 Mean-centering the block/time variable (i.e., coding it from −8 to +8 for the linear
slope and from −82 to +82 for the quadratic slope) did not materially change the results.
Therefore, we based both the linear and the quadratic effects on block/time 1 to make
interpretation of the results easier.

5 Random intercepts are used on dependent variables (DVs) so that the data for each
person is expressed as a value that is relative to their own mean.
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effect.
We also applied multi-level modeling analyses to examine between-

subjects relationships (rather than within-subject relationships, as de-
scribed above) among time-window size, RewP amplitude, and FMT
power.6 Each participant's average RewP amplitude and FMT power
values were calculated separately across all the trials. Each score was
then grand mean-centered for each participant by subtracting the grand
average (across all participants) from each measure (e.g., the grand
mean-centered RewP amplitude for a participant = the mean RewP
amplitude averaged across all trials for this participant – the grand
mean RewP amplitude averaged across all participants). We tested
time-window size by RewP amplitude and FMT power, using a random
intercept for each participant, unstructured covariance type, and max-
imum likelihood estimation. For completeness, we also tested models,
separately, for RewP amplitude and FMT power as a function of the
other two variables (e.g., predicting FMT power by time-window size
and RewP amplitude).

We also explored the effects of personality traits using multi-level
modeling analyses, the results of which are reported in the
Supplementary materials.

5. Results

Three participants discontinued the task.7 The data of three other
participants were excluded from analysis due to self-reported neurolo-
gical or psychiatric disorders. Further, during the first few blocks of
trials one participant produced extreme time estimates (i.e., by re-
sponding about 7 s after cue onset); performance for this participant
improved thereafter, but the probability of reward was strongly biased
across blocks of trials due to the staircase procedure (mostly no reward
in the first few blocks, followed by mostly reward in the following few
blocks). The data of two participants were also excluded due to artifacts
associated with excessive head movement. Further, we excluded data
from three participants with average time-window size or FMT power
that was 3 standard deviations (SD) above the group means. In total
these exclusions resulted in the data of 53 participants used for all of
the analyses.

5.1. Behavior

5.1.1. Time-window size
Fig. 1a depicts the time-course of the mean time-window size

averaged across participants. The multi-level modeling analysis pre-
dicting the time-window size with RewP, FMT power, linear-time, and
quadratic-time revealed significant main effects of linear-time and
quadratic-time (Table 1, lines 1 & 2). These results confirm the im-
pression of Fig. 1a that participants’ performance improved with time
but worsened towards the end of the experiment. We also found sig-
nificant interactions of linear- and quadratic-time with FMT power on
time-window size (Table 1, lines 5 & 7).8 Fig. 2 reveals the nature of
these effects. The relation between FMT power and time-window size

differed across time, such that participants performed the task better
(i.e., time-window size was smaller) at the start of the task when they
produced more FMT power relative to their average FMT power across
the task, as compared to when they produced less FMT power relative
to their average FMT power across the task. Note that this observation
holds even though the participants generally performed the task worse
at the start of the experiment compared to at the end (Fig. 1a). Further,
their performance was more stable later in the task (exhibiting rela-
tively shallow changes with time) when they produced greater FMT
power relative to their average FMT power across the task as compared
to when they produced less FMT power relative to their average FMT
power across the task. A significant main effect of FMT power (Table 1,
line 3) signifies that the difference in time-window size by FMT power
in the beginning was statistically significant.

Additionally, we conducted several analyses that explored whether
FMT power and RewP amplitude might interact to modulate perfor-
mance. First, we tested the model predicting time-window size by
adding to the original model terms capturing the interaction of FMT
power with RewP amplitude, and the 3-way interaction of these pre-
dictors with linear- and quadratic-time (i.e., FMT, RewP, FMT-RewP
interaction, time-linear/quadratic effects, and FMT-RewP-time – both
linear and quadratic – interactions as predictors of time-window size).
However, this analysis yielded only significant main effects of time
(both linear and quadratic, both p < 0.001), and the interaction terms
did not significantly predict time-window size (all p > 0.17). Second,
in order to evaluate whether the failure to observe interactions with
RewP and FMT were because they were both highly correlated with
time on task, we tested the model predicting time-window size by in-
cluding the interaction of FMT and RewP as predictors while excluding
the time variable (i.e., FMT, RewP, and FMT-RewP interaction as pre-
dictors of time-window size). Nevertheless, although this analysis re-
vealed that increased FMT power predicted smaller (better) time-
window size (p=0.039), the interaction term failed to predict time-
window size (p=0.433). Third, we explored possible mediation effects
of FMT and/or RewP on time-window size by conducting a piecewise
structural equation model (Lefcheck, 2016). This model tested whether
time (both linear and quadratic effects) predicted time-window size via
RewP amplitude and FMT power (i.e., time→RewP→FMT→time-
window size). However, the model fit was poor (i.e., the model sig-
nificantly differed from the actual data with p=0), indicating that
RewP amplitude did not mediate the effect of FMT on behavior (see
Supplementary Fig. 5). These results suggest that RewP amplitude and

Fig. 1. Block by block performance and electrophysiological measures, aver-
aged across subjects for (a) time-window size, (b) frontal midline theta power,
(c) reward positivity amplitude, and (d) P300 amplitude. Error bars indicate
within-subject 95% confidence intervals (Cousineau, 2005).

6 Note that this results in a single/participant level remaining. Hence when this ana-
lysis was conducted using the standard linear regression by predicting each dependent
variable by the remaining variables entered together in a model, the (null) results stayed
the same, as expected (all p > 0.7).

7 One participant indicated signs of claustrophobia, one participant left feeling unwell,
and one participant discontinued after reporting that s/he had earned enough money.

8 Note that when we performed the same analysis while retaining the data of the
outliers (that were removed based on the 3 SD criterion), we no longer observed reliable
quadratic-time effects (r= 0.22 including outliers, and r= 0.42 excluding outliers) nor
the interaction effects with linear-time/quadratic-time and FMT (r= 0.04/0.04 including
outliers, and r=0.09/0.07 excluding outliers). These interaction effects are therefore less
robust when the data of the participants who produced extreme scores were included in
the analyses. This is not surprising given that the effect sizes for the interaction terms
were small to being with, and the inclusion of extreme scores increased the variability to
explain, which necessarily reduced the effect sizes.
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FMT power appear to be independent measures of task performance.

5.2. Electrophysiology

5.2.1. Frontal midline theta
Fig. 1b depicts the time-course of FMT power over time averaged

across participants. As the inclusion of a quadratic time variable in the
model did not reveal a significant effect, the multi-level modeling
analysis here tested a model excluding this variable. The model pre-
dicting FMT power with time-window size, RewP amplitude, and
linear-time revealed a significant main effect of linear-time, such that
FMT power increased over time (Table 1, line 9). There was also a
significant interaction of linear-time and time-window size on FMT
power (Table 1, line 12; see Supplementary Fig. 1).9 The pattern of
interaction indicates that better task performance was associated with
larger FMT power at the beginning (as shown by the significant main
effect of time-window size; Table 1, line 10) and less of an increase in

FMT power with time on task (Supplementary Fig. 1).

5.2.2. RewP
Fig. 1c depicts the time-course of RewP amplitude averaged across

participants, and Fig. 3 depicts the RewP waveforms averaged across
participants for every half-hour of task performance. The multi-level
modeling analysis predicting RewP amplitude with time-window size,
FMT power, linear-time, and quadratic-time revealed statistically sig-
nificant linear (Table 1, line 14) and quadratic effects (Table 1, line 15)
of time on RewP amplitude. This result indicates a nonlinear reduction
in RewP amplitude (more negative) with time (Fig. 1c). There were also
significant interactions of linear-time and time-window size (Table 1,
line 18)10 and of quadratic-time and time-window size (Table 1, line

Table 1
Multi-level modeling results on behavioral and electrophysiological measures over time.

DV Predictors b SE 95% Cis r pVal Line

TWS Block-L −10.28 2.41 [−15.1, −5.47] 0.478 <0.001 1
Block-Q 0.6 0.16 [0.27, 0.93] 0.424 0.001 2
FMT −78.3 30.22 [−137.9, −18.71] 0.181 0.01 3
RewP 2.04 1.82 [−1.53, 5.62] 0.043 0.263 4
Block-L*FMT 22.64 8.89 [5.2, 40.09] 0.093 0.011 5
Block-L*RewP −0.9 0.57 [−2.02, 0.22] 0.057 0.115 6
Block-Q*FMT −1.25 0.61 [−2.45, −0.05] 0.074 0.041 7
Block-Q*RewP 0.06 0.04 [−0.01, 0.14] 0.061 0.093 8

FMT Block-L 0.01 0.003 [0.01, 0.02] 0.532 <0.001 9
TWS −0.0003 0.0001 [−0.0006, −0.0001] 0.084 0.019 10
RewP 0.004 0.003 [−0.001, 0.01] 0.053 0.142 11
Block-L*TWS 0.00004 0.00002 [0.00001, 0.00007] 0.091 0.012 12
Block-L*RewP −0.0004 0.0004 [−0.001, 0.0003] 0.037 0.304 13

RewP Block-L −0.35 0.09 [−0.53, −0.17] 0.453 <0.001 14
Block-Q 0.01 0.01 [0.004, 0.02] 0.326 0.009 15
TWS 0.007 0.004 [−0.001 0.01] 0.070 0.087 16
FMT 1.27 1.46 [−1.61, 4.16] 0.064 0.385 17
Block-L*TWS −0.003 0.001 [−0.006, −0.0006] 0.087 0.015 18
Block-L*FMT 0.05 0.45 [−0.83, 0.94] 0.004 0.909 19
Block-Q*TWS 0.0002 0.00008 [0.00004, 0.0004] 0.087 0.014 20
Block-Q*FMT −0.01 0.03 [−0.07, 0.05] 0.013 0.724 21

P300 Block-L −0.38 0.05 [−0.47, −0.29] 0.755 <0.001 22

Multi-level modeling results on time-window size (TWS), frontal midline theta (FMT) power, reward positivity (RewP) amplitude, and P300 amplitude with time-on-
task. Line indicates the row number in which each effect is reported (for the purpose of indexing in the text). Block-L = block (time) coded as a linear slope from 0 to
15. Block-Q = block (time) coded as a quadratic slope (as the power of linear slope) from 02 to 152. Significant results (p < 0.05) are highlighted in bold.

Fig. 2. The within-subjects effect depicting the interaction of frontal midline
theta (FMT) power with linear-time (block) and quadratic-time on time-window
size (TWS). The solid and dotted lines denote TWS across blocks when parti-
cipants produced FMT power that was above or below one standard deviation
relative to their own average FMT, respectively (+/−1 SD FMT). Note that this
figure is derived from the model predicting TWS based on time and FMT power
(i.e., excluding reward positivity amplitude).

Fig. 3. The reward positivity (RewP) derived as a difference wave (reward
feedback minus no-reward feedback) to event-related potentials averaged
across participants and across blocks, separately for every consecutive four
blocks. Blocks 1–4=RewP difference wave for block 1–4 (i.e., 1st 30min).
Blocks 5–8=RewP difference wave for block 5–8 (2nd 30min). Blocks
9–12=RewP difference wave for block 9–12 (3rd 30min). Blocks
13–16=RewP difference wave for block 13–16 (4th 30min). RewP amplitude
was measured between 200 and 300ms following feedback onset at time 0 (as
highlighted in gray). Negative is plotted up by convention.

9 Note that all the results remained unchanged when we performed the same analysis
while retaining the data of the outliers (that were removed based on the 3SD criterion).

10 Note that when we performed the same analysis while retaining the data of the
outliers (that were removed based on the 3 SD criterion), we no longer observed reliable
quadratic-time effects (the model with the quadratic-time variable failed to run when
outliers were included) nor the interaction effect with linear-time and time-window size
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20) on RewP amplitude, such that smaller (better) time-window size
(relative to each participant's own average) was associated with a re-
latively smaller, linear decline in RewP amplitude (Supplementary
Fig. 3).

5.2.3. P300
Fig. 1d depicts the time-course of P300 amplitude over time aver-

aged across participants, and Supplementary Fig. 4 depicts the P300
waveforms averaged across participants for every half-hour of task
performance, separately for the reward and no-reward trials. As the
inclusion of a quadratic time variable in the model did not reveal a
significant effect, the multi-level modeling analysis here excluded this
variable. A multi-level modeling analysis predicting P300 amplitude
with linear-time revealed a significant main effect of linear-time
(Table 1, line 22), indicating that P300 amplitude decreased linearly
with time on task.

5.3. Relationship between behavioral and electrophysiological measures

The multi-level modeling analysis examining the between-subjects
relationships among time-window size, RewP, and FMT power did not
reveal any statistically significant relationships (p > 0.40). This in-
dicates that the overall sizes of FMT power and RewP amplitude were
not related to task performance nor to each other. Note that because the
statistical power for the between-participants analyses is low, these
results should be interpreted with caution (as is also the case for the
analyses related to personality, below).

5.4. Personality questionnaires

A summary of each questionnaire score is provided in Table 2, and
zero-order correlations among questionnaires are provided in Table 3.

We conducted a simple correlation analysis among time-window
size, RewP, FMT, personality scores, and the task engagement level
assessed by the post-experiment paper-and-pencil questionnaires (see
Task Procedure).11 Higher levels of task engagement were correlated
with higher reward responsiveness scores (Pearson r= 0.310,
p=0.03), higher persistence scores (r= 0.316, p= 0.027), as well as
better (smaller) time-window size (r=−0.381, p= 0.007). Ex-
ploratory analyses examining the impact of personality traits on time-
window size, RewP amplitude, and FMT power did not reveal any
significant effects of personality on these measures (see Supplementary
Table 1).

6. Discussion

Goal-directed behaviors often require the deployment of cognitive
control for their successful execution. Yet, because cognitive control is
commonly perceived to be effortful, people tend to avoid applying it.
Theories of control have therefore proposed the existence of a neuro-
cognitive mechanism that regulates control levels by weighing the
benefits (or rewards) of control against its associated effort-related costs
(Botvinick and Braver, 2015; Holroyd and Yeung, 2012; Holroyd and
McClure, 2015; Kurzban et al., 2013; Inzlicht et al., 2014; Shenhav
et al., 2013, 2017; Westbrook and Braver, 2015). How this occurs is not
fully understood, but ACC is believed to be partly responsible for it

(e.g., Holroyd and Umemoto, 2016; Shenhav et al., 2013, 2017;
Vassena et al., 2017; Verguts et al., 2015). Here we explored the role of
ACC in valuating and regulating control levels in order to sustain per-
formance on an extended task, as revealed by electrophysiological in-
dices of ACC activity (Holroyd and Umemoto, 2016).

Participants performed a standard time estimation task for 2 h while
their EEG was recorded (Miltner et al., 1997). They received a small
monetary reward for each “on-time” estimate, the difficulty of which
was adjusted across trials so that all of the participants received the
rewards on approximately 50% of the trials. Moreover, in order to in-
crease their motivation the participants were told, truthfully, that better
performance increased their chances for receiving one of two $100
Amazon gift cards, which in fact were later awarded to two of the
participants via a lottery. We observed that time-window size decreased
over time, following both a linear and a quadratic trend (Fig. 1a); that
is, performance initially improved with time-on-task and later dete-
riorated towards the end of the experiment. A straightforward inter-
pretation of these findings is that the initial improvement in task per-
formance reflects an early learning process, and that the later
decrement in performance reflects an impairment due to mental fa-
tigue. Several observations support this interpretation. First, post-ex-
periment self-reports revealed that better (smaller) time-window size
correlated with overall task engagement, suggesting that task perfor-
mance depended strongly on the control levels applied; thus, a with-
drawal of control should result in impaired performance. Second, the
amplitude of the P300, which is said to index attentional resource al-
location to the task at hand (Polich, 2007), decreased with time on task
(Fig. 1c & d). This gradual decline in P300 amplitude over time re-
plicates a study by Hopstaken and colleagues (2015; 2016), who re-
ported a time-on-task decrease in P300 amplitude that was accom-
panied by subjective measures of decreasing task engagement and
increasing mental fatigue. Third, the amplitude of the RewP– which is
derived as a difference wave in order to control for overlapping ERP
components like the P300 – also declined with time on task. The strong
association between RewP amplitude and reward sensitivity (Holroyd
and Umemoto, 2016) suggests that the participants valued the

Table 2
Summary of participant questionnaire scores. Temporal Experience of Pleasure-
C= consummatory pleasure subscale of the temporal experience of pleasure
scale. Temporal Experience of Pleasure-A = anticipatory pleasure subscale of
the temporal experience of pleasure scale. Apathy is based on the apathy eva-
luation scale. Depression is based on the depression subscale of the depression,
anxiety, and stress scale (DASS-21).

Mean SD Range Chronbach's α

Reward Responsiveness 26.4 2.57 19–30 0.71
Temporal Experience of Pleasure-C 37.3 4.44 26–46 0.46
Temporal Experience of Pleasure-A 44.62 6.24 32–60 0.74
Persistence 67.91 10.49 42–87 0.9
Apathy 31.83 5.41 23–43 0.77
Depression 3.96 4.34 0–18 0.89

Table 3
Zero-order correlations among questionnaire scores.

1 2 3 4 5

1. Reward Responsiveness
2. Temporal Experience of

Pleasure-C
.03

3. Temporal Experience of
Pleasure-A

.44** .20

4. Persistence .49** −0.04 .26
5. Apathy −0.62** −0.17 −0.54** −0.58**

6. Depression −0.33* .04 −0.28* −0.57** 0.40**

* p < 0.05.
** p < 0.01.

(footnote continued)
(r= 0.01 including outliers, and r= 0.09 excluding outliers). These interaction effects
are therefore less robust when the data of the participants who produced extreme scores
were included in the analyses. Similar to the model predicting time-window size (see
footnote #7), this is not surprising given that the effect sizes for the interaction terms
were small to being with, and the inclusion of extreme scores increased the variability to
explain, which necessarily reduced the effect sizes.

11 Four of the participants' engagement levels were not obtained due to an error, hence
the number of participants included in this analysis was 49.
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performance feedback less as the task progressed.
By contrast, FMT power increased with time on task (Fig. 1b), as

observed previously (Barwick et al., 2012; Paus et al., 1997; Wascher
et al., 2014). These findings suggest that, as predicted, reward valuation
and attention levels decreased while control levels increased with time-
on-task. Taken together, they appear to indicate that greater application
of control in order to counteract deteriorating levels of attention and
reward valuation is associated with accumulating mental fatigue, as
suggested by a deterioration in performance at the end of the task (see
also Hopstaken et al., 2015; c.f. Milyavskaya et al., this issue).

We also predicted that RewP amplitude and FMT power should
interact to support task performance. However, the between-person
analyses did not reveal any significant associations among time-window
size, RewP amplitude, and FMT power, even though both of the elec-
trophysiological phenomena are believed to be produced by ACC
(Holroyd and Umemoto, 2016). Although low statistical power may
have obscured these relationships, it is also possible that reward va-
luation and effort expenditure provide semi-independent determinants
of task performance, such that RewP amplitude and FMT power would
not be expected to co-vary across participants (e.g., Mueller et al.,
2015). For this reason, we conducted within-subject analyses to gain
insight into these factors. In particular, we applied a multi-level mod-
eling approach, which provides a statistically powerful and flexible
means to analyze how variations in within-subject measures interrelate
over time (Hopstaken et al., 2015; Saunders et al., 2015).

Our primary analysis of interest explored whether FMT power and
RewP amplitude, measured with respect to their within-subjects mean
values, predicted subject performance (time-window size) across the
task. This analysis revealed significant linear and quadratic effects on
task performance of time-on-task that were modulated by FMT power
(Fig. 2): participants performed the task better (i.e., time-window size
was smaller) at the start of the task when they produced more FMT
power relative to their average FMT power across the task, as compared
to when they produced less FMT power relative to their average FMT
power across the task. And their performance was more stable later in
the task (exhibiting relatively shallow changes with time) when they
produced greater FMT power relative to their average FMT power
across the task as compared to when they produced less FMT power
relative to their average FMT power across the task. These findings
provide insight into the role of control in regulating task performance:
Although increased FMT power is associated with deteriorating per-
formance at the end of the task, as discussed above (see Fig. 1a and b),
the within-subjects analysis reveals that greater FMT power is also as-
sociated with better performance at the start of the task (Fig. 2). Greater
FMT power is further associated with less steep of a fall in performance
toward the end of the task. Thus, FMT power appears to reflect a neural
process that enhances performance, both during an early stage when
subjects learn to perform the task better, and a later stage when per-
formance suffers due to cognitive fatigue.

By contrast, contrary to our prediction, RewP amplitude did not
predict task performance (Table 1, lines 4, 6, and 8). Further, several
exploratory analyses also failed to reveal any significant interactions
between RewP amplitude and FMT power predicting time-window size,
or a mediating effect of RewP amplitude on FMT power to predict time-
window size. Several possibilities might account for this. First, the
variation in the subjective reward value of the feedback may have been
insufficient to permit significant changes in performance, despite the
lengthy and tedious nature of the task. In particular, the objective re-
ward value was held constant across the task, which may have con-
strained the participants’ subjective appraisals of the feedback. Second,
the task design may have been suboptimal for detecting the inter-
relationships between reward valuation, effortful control and task
performance. For example, task difficulty in this study was titrated so
that participants received both reward and no-reward feedback ap-
proximately 50% of the time. This may have restricted the variability of
the control signal, thereby weakening the potential RewP-FMT

relationship. Third, the interplay between reward value and task per-
formance may be more complicated than the simple linear and curvi-
linear models that we tested here, especially given presumed individual
variation in these processes across subjects. Consistent with this, we
found that better task performers scored higher on trait measures of
reward responsiveness and persistence. It may be that the performance
levels of a subset of participants, in particular those scoring high in
persistence, are less likely to be influenced by individual rewards re-
ceived during the task (as this group may be more concerned about
sustaining effort to complete the task successfully rather than accu-
mulating rewards along the way). Although our study did not have
sufficient statistical power to examine such individual differences, this
possibility could be investigated in the future.

In addition to testing whether RewP amplitude and FMT power
predict extended performance on an effortful task, we also explored
factors that predict RewP amplitude and FMT power. Toward this end,
we conducted within-person multi-level modeling analyses on these
measures (Table 1). The analysis predicting RewP amplitude revealed
significant interactions of time-window size with both linear- and
quadratic-time trends. That is, smaller (better) time-window size (re-
lative to each participant's own average time-window size across the
task) was associated with smaller declines in RewP amplitude over
time, whereas larger (worse) time-window size was associated with a
steeper decline in RewP amplitude with time on task (Supplementary
Fig. 3). Similarly, the within-person analysis predicting FMT revealed a
significant interaction of linear-time and time-window size: Better task
performance was associated with larger FMT power at the beginning of
the task and smaller increases in FMT power with time-on-task
(Supplementary Fig. 1). By contrast, we did not observe any associa-
tions between RewP amplitude and FMT power, suggesting their in-
dependence (Holroyd and Umemoto, 2016; Holroyd et al., 2012). It
appears that greater task engagement, as reflected in smaller time-
window size, was associated with more gradual reductions in RewP
amplitude and more gradual increases in FMT power. That is, good task
performance was associated with more stable indicators of reward va-
luation and cognitive control throughout the task.

Finally, we found from post-experiment self-reports that higher le-
vels of task engagement correlated significantly with higher reward
responsiveness and persistence scores, indicating that participants who
scored high on these personality traits were more engaged during the
entire experiment. An exploration of whether persistence and reward
sensitivity were associated with task performance, RewP amplitude,
and FMT power failed to reveal any significant relations among them
(see Supplementary Table 1). Although a number of studies have re-
ported individual differences in personality associated with RewP am-
plitude (e.g., Bress and Hajcak, 2013, Cooper et al., 2014; Liu et al.,
2014; Parvaz et al., 2016; Umemoto and Holroyd, 2017) and phasic
FMT power (e.g., Cavanagh and Shackman, 2014), we did not replicate
any of these findings. Nevertheless, such effects may have been ob-
scured by the low statistical power in the present study for conducting
analyses related to individual differences.

A challenging question is whether increasing FMT power with time-
on-task reflects growing mental fatigue per se, or the application of
effortful control needed to overcome that fatigue, as these processes are
necessarily correlated. In fact, several neuroimaging studies have im-
plicated ACC in cognitive fatigue (e.g., Cook et al., 2007; Dobryakova
et al., 2013; Wylie et al., 2017). However, we argue against the simple
association between FMT and fatigue itself. Specifically, mental fatigue
is generally associated with impaired task performance (as reflected by
increased error rates and greater reaction times), but performance here
improved over the first 90min of the study while FMT power continued
to rise. Furthermore, during the initial stage of the task greater FMT
was associated, within subjects, with better task performance. Our
observation that changes in FMT power closely followed time-on-task
performance, as well as relatively more stable (shallower changes in)
task performance, appears inconsistent with the account that FMT
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simply reflects mental fatigue itself.
Past studies have shown that a brief, phasic burst of FMT power is

commonly elicited by the delivery of external negative feedback stimuli
(e.g., loss of money, punishment; see e.g., Bernat et al., 2015; Foti et al.,
2015) and by response conflict and error commission (e.g., Cavanagh
and Frank, 2014). Error commission has been studied in the literature
examining mental fatigue, where the amplitude of the error related
negativity (ERN) – a performance-related ERP component associated
with both the RewP (Holroyd and Coles, 2002) and FMT power
(Cavanagh and Frank, 2014) – has been observed to decline with time
on task (Lorist et al., 2005; Boksem et al., 2006; Inzlicht and Gutsell,
2007). By contrast, ongoing FMT power, as we measured in this study,
is associated with prolonged mental challenges and high working
memory load (Hsieh and Ranganath, 2014; Mitchell et al., 2008). Un-
derstanding how phasic and ongoing FMT signals relate to each other is
an important question for future studies. For example, past studies have
shown that the adverse effects of mental fatigue on task performance
and ERN amplitude, which is associated with phasic FMT (Cavanagh
and Frank, 2014), can be counteracted with motivational incentives
(e.g., Boksem et al., 2006; Hopstaken et al., 2015; Sarter et al., 2006).
Whether fatigue-related changes in tonic FMT power can also be re-
versed with task incentives is an interesting avenue for future research.

In summary, although task performance improved until the last
quarter of the experiment, when it started to reverse, decreasing RewP
and P300 amplitudes indicated that the participants gradually disen-
gaged from the task and devalued the outcomes of their performance.
By contrast, FMT power increased monotonically with time on task,
suggesting greater recruitment of cognitive control even as the task
became harder and less rewarding. Although task performance and the
electrophysiological measures did not correlate with each other across
participants, a within-person increase in FMT power was associated
with 1) better task performance at the start of the experiment, sug-
gesting that high control levels facilitated learning; and 2) more stable
performance overall. Conversely, better task performance was asso-
ciated with higher self-reports of task engagement and relatively more
stable RewP amplitudes and FMT power over time. Together, we in-
terpret these results as reflecting the role of ACC in sustaining behavior
over an extended period, especially for tasks that demand high levels of
cognitive control and low immediate reward value.
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